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Abstract

Many geophysical flows are merely perturbations of some fundamental equilibrium state. If a numerical scheme shall
capture such flows efficiently, it should be able to preserve the unperturbed equilibrium state at the discrete level. Here, we
present a class of schemes of any desired order of accuracy which preserve the lake at rest perfectly. These schemes should
have an impact for studying important classes of lake and ocean flows.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this introduction, we present some of the key ideas and ingredients of the subsequent sections. We begin
with a brief review of the shallow water equations and their equilibrium states, in particular the lake at rest.
Then we show an example of a numerical storm produced by a scheme which is not in discrete equilibrium.
Next we review the key ingredient of several of the recent well-balanced schemes, and give some related ref-
erences. We close with a preview of our new high order well-balanced schemes.
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1.1. Shallow water equations

Many geophysical flows are modeled by variants of the shallow water equations. In their simplest form
these equations read
ht þ ðhuÞx ¼ 0;

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ �ghzx.
ð1Þ
Here z(x) defines the bottom-topography, h(x, t) denotes the water height above the bottom, and u(x, t) is the
horizontal component of the water velocity at position x at time t. The gravity constant is denoted by g. In (1),
we have neglected two-dimensional effects, bottom friction, Coriolis forces arising in a rotational frame, wind
forces, and, of course, vertical variations of the velocity field. The proper treatment of Coriolis forces is con-
sidered, for instance, in [5], see also [6] for a general topography. For an example of more complete shallow
water equations which are used in coastal engineering, we refer to Gjevik et al. [9].

1.2. Equilibrium states

In spite of all of these simplifications, Eq. (1) still contain the most fundamental balances of shallow water
flows. The convective part on the left-hand-side (LHS) is a hyperbolic system of conservation laws similar to
that of compressible fluid flows, and the source term on the right-hand-side (RHS) is due to gravitational
acceleration. Let us look at the equilibrium, or stationary, states. They are given by
hu � const: and
1

2
u2 þ gH � const.;
where
H :¼ hþ z
is the water level. In this paper, we are particularly interested in the lake at rest, given by
50 m 100 m  150 m  200 m 250 m
220 m

230 m

240 m

250 m

 260 m

270 m

x

to
ta

l 
h

e
ig

h
t

bottom topography

total height

Fig. 1. Cross section of lake Rursee: bottom topography and quiet water level. 296 cells.
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u � 0 and H � const.
Such a situation is shown in Fig. 1 for a cross-section of lake Rursee near Aachen. Let us pause for a moment
and look at this balance once more. From (1) and the assumptions of stationary flow with vanishing velocity
we have
0 ¼ g
h2

2

� �
x

þ ghzx; ð2Þ
which is called hydrostatic balance. The first term is the hydrostatic pressure, which models the tendency of a
column of water to collapse vertically and at the same time expand laterally under the influence of gravity. The
second term is the gravitational acceleration down an inclined bottom z. Now use the chain rule of differen-
tiation and divide by h to obtain
0 ¼ gðhþ zÞx ¼ gHx.
Thus, we see that the effective acceleration can be interpreted as gravitational acceleration down a non-flat
water level H.

1.3. Numerical storms

If a numerical scheme does not preserve the fundamental balance (2) at the discrete level, this may result in
spurious oscillations, or numerical storms, as seen in Fig. 2. The figure shows a cross-section of lake Rursee
near Aachen, and the water should remain at rest as in Fig. 1. Thus, all waves in Fig. 2 are pure numerical
artifacts. Some of them are more than a meter high, especially near the edge of the lake. The computation
is run with a standard finite volume scheme, a naive treatment of the source term, and 296 spatial grid cells.
Clearly, this scheme on the current grid would not be able to resolve waves which are of the order of magni-
tude of the numerical perturbations. One would therefore have to run such a scheme with a much finer grid,
which would make the computation rather costly.

1.4. Well-balanced schemes

The results in Fig. 3, which reproduce the lake at rest perfectly, are obtained with a so-called well-balanced
scheme, using the same number of spatial grid cells and time steps. Let us briefly sketch the main ingredient of
the discrete balance which makes the scheme successful. The main difficulty for the schemes is to preserve the
balance of hydrostatic pressure and gravitational acceleration (hydrostatic balance). Given a cell [xL,xR], let
hL ¼ hðxLÞ; hR ¼ hðxRÞ. ð3Þ

Before we proceed, let us note that this notation hides whether these values should represent the left or right
limits of piecewise smooth reconstructions at the interface, or the value chosen by an approximate Riemann
solver. We postpone this crucial question to Section 2 and continue to outline the main ingredient of well-
balancing.

A conservative finite volume discretization of the hydrostatic pressure would then be
g
h2

2

� �
x

� g
2

h2R � h2L
Dx

. ð4Þ
We will now show that this already implies a canonical well-balanced discretization of the source term. Indeed,
suppose that the source term is discretized as
ghzx � g�hDz;
where �h � h and Dz � zx. Now we suppose that u ” 0 and H ” const., and we want to enforce the discrete
hydrostatic balance
0 ¼ g
2

h2R � h2L
Dx

þ g�hDz. ð5Þ
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Fig. 2. Numerical storm over lake Rursee, produced by a naive finite volume scheme: water level (top) and momentum (bottom) at time
T = 0.2 (76 time steps).
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From (5) we obtain
�hDz ¼ � 1

2

h2R � h2L
Dx

¼ � hL þ hR
2

hR � hL
Dx

¼ � hL þ hR
2

ðHR � zRÞ � ðHL � zLÞ
Dx

¼ hL þ hR
2

zR � zL
Dx

. ð6Þ
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Fig. 3. Well-balanced computation of quiet lake Rursee: water level (top) and momentum (bottom) at time T = 0.2 (71 time steps). Note
that the scale of the momentum axis is 10�9.
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This discretization of the source term was first proposed by Bermudez and Vazquez [3], and it is also the essen-
tial ingredient of the recent well-balanced schemes of Jin [16], Kurganov and Levy [19] and Audusse et al. [1].
Closely related schemes usually try to discretize the derivative of the convective flux and the source term by
one and the same finite difference or finite volume operator, see [2,4,29]. Greenberg, LeRoux and coworkers
developed schemes based on the solution of the non-homogeneous Riemann-problem, see [13,11,10]. We
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would also like to mention the finite volume Roe schemes of Gallouët and coworkers [8] and the Norwegian
front tracking approach [14]. This list is by far not exhaustive, and we refer to the papers mentioned above for
further references.

We now comment on the ambiguities hidden in (3). The well-balancing in Eqs. (5) and (6) will only work
if some continuity property holds at the equilibrium state. Our paper is based on the recent work of Audu-
sse et al. [1], where such a continuity is guaranteed by a hydrostatic reconstruction, plus an additional
correction of the source term. Their first and second-order schemes preserve positivity of water height
and the lake at rest. The first-order scheme also satisfies a discrete entropy inequality at discontinuities.

In the present paper, we are interested in very high order accurate well-balanced schemes. These more
sophisticated schemes are needed if, for instance, one wants to track small waves over long periods of time.
Well-balanced finite difference schemes of high order of accuracy were developed by Vukovic and Sopta 2002
[28] and Xing and Shu 2004 [29]. This approach is extended to more general balance laws in [30] for finite
differences and [31] for finite volumes. Here, we extend the well-balanced finite volume schemes of Audusse
et al. [1] to any desired order of accuracy.

We would like to stress that the approach to achieve high order is rather different in the case of finite
difference and finite volume schemes. In the former case, Xing and Shu rewrite the balance law in such a
way that the fluxes and source terms can be treated by one and the same difference operator. In the present
paper, we observe that the well-balanced quadrature (6) maintains all its desirable properties under numerical
extrapolation. Together with standard high order reconstructions and the hydrostatic correction this leads
immediately to the desired very high order accurate well-balanced finite volume schemes.

We conjecture that this technique can be applied to many, if not all, of the second-order well-balanced
schemes based on (6), once an appropriate continuity condition at the cell interface is enforced. We refer
the reader to the recent preprints [30,31] for further examples of interface continuity conditions.

Numerical experiments show the expected convergence rates for a fourth/fifth-order version of our new
scheme, and excellent resolution of discontinuities and very small disturbances.
2. High order well-balanced schemes

In this section, we introduce our extrapolation technique. Even though we believe that the approach is
rather general, we develop it only for the scheme of Audusse et al. [1], and remark on the more general features
as we go along. We first summarize their second-order well-balanced scheme. Then, for any order of accuracy,
we introduce our new treatment of the source term. We close the section with a summary of the new algo-
rithm. Details of the WENO reconstruction are given in Appendix A.
2.1. Review of second-order well-balancing via hydrostatic reconstruction

Let U := (h,hu)T be the vector of conservative variables. First we formulate a semidiscrete finite volume
scheme for the cell averages,
UiðtÞ :¼
1

Dxi

Z x
iþ1

2

x
i�1

2

Uðx; tÞdx;
with Dxi :¼ xiþ1
2
� xi�1

2
. Based on these cell averages, one defines a piecewise polynomial reconstruction, which

will in general be discontinuous at the interfaces xiþ1
2
. Oscillations will be suppressed with limiters. Audusse

et al. use a linear reconstruction with minmod limiter, which leads to a second-order scheme. Within cell i,
the left and right values of each component at position xi�1

2
þ 0, respectively, xiþ1

2
� 0 are denoted by (.)i,l

and (.)i,r.
Audusse et al. reconstruct h, H, and u. From this, the bottom topography is computed as z = H � h. This

leaves the lake at rest unperturbed, but it leads to a discontinuous bottom. To get a stable and well-balanced
scheme (compare the discussion in Section 1), the following hydrostatic reconstruction is introduced:
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z�iþ1
2
:¼ maxðzi;r; ziþ1;lÞ; ð7Þ

h�i;r :¼ maxð0; hi;r þ zi;r � z�iþ1
2
Þ; ð8Þ

h�iþ1;l :¼ maxð0; hiþ1;l þ ziþ1;l � z�iþ1
2
Þ. ð9Þ
Eq. (7) recovers a continuous bottom locally at each interface. The new local values h�i;r and h�iþ1;l of the height
ensure that at steady state, i.e., for hi,r + zi,r = hi+1,l + zi+1,l, h* remains continuous across each cell (compare
(3)). On the other hand, one has thereby modified the fluxes at the interface, and we will have to correct this
below (see Eqs. (11) and (12)). Together the hydrostatic reconstruction and the correction of the interface
fluxes will permit to balance the scheme for any numerical flux consistent with the homogeneous shallow water
equations. The values for h* are used to construct auxiliary values U �

i;r and U �
iþ1;l which will enter an approx-

imate Riemann solver (compare (4)):
U �
i;r :¼

h�i;r
h�i;rui;r

 !
;

U �
iþ1;l :¼

h�iþ1;l

h�iþ1;luiþ1;l

 !
.

Note that at the interface xiþ1
2
, we have two different reconstructions, namely xiþ1

2�
on the left and xiþ1

2þ
on the

right side. As in [1], the semidiscrete finite volume scheme reads
Dxi
d

dt
U iðtÞ þFrðUi;Uiþ1; zi;r; ziþ1;lÞ �FlðUi�1;Ui; zi�1;r; zi;lÞ ¼ SðjÞ

i . ð10Þ
It remains to specify the numerical fluxes and the source term. The fluxes are given by
FrðUi;Uiþ1; zi;r; ziþ1;lÞ :¼ F ðU �
i;r;U

�
iþ1;lÞ þ

0
g
2
h2i;r � g

2
ðh�i;rÞ

2

 !
; ð11Þ

FlðUi�1;Ui; zi�1;l; zi;rÞ :¼ F ðU �
i�1;r;U

�
i;lÞ þ

0
g
2
h2i;l �

g
2
ðh�i;lÞ

2

 !
; ð12Þ
where F is a conservative numerical flux consistent with the homogeneous shallow water equations and the
second term on the RHS is the correction to the interface fluxes due to the modification in the water height
introduced by the hydrostatic reconstruction. If the hydrostatic reconstruction leaves the water height
untouched, then h�i;r ¼ hi;r, h�i;l ¼ hi;l and no correction is required. Because of their robustness, the local
Lax-Friedrichs, Harten–Lax-vanLeer or kinetic solvers are used in [1]. In the present paper, we use the local
Lax-Friedrichs flux for all our examples.

Let us consider the steady state of the lake at rest. Recall from (7) to (9) that in this case the hydrostatic
reconstruction U* is continuous across the interfaces and u = 0. Then any consistent numerical flux
F ðU �

i;r;U
�
iþ1;lÞ will reduce to the hydrostatic pressure term,
F ðU �
i;r;U

�
iþ1;lÞ ¼

0
g
2
ðh�i;rÞ

2

 !
; ð13Þ

F ðU �
i�1;r;U

�
i;lÞ ¼

0
g
2
ðh�i;lÞ

2

 !
. ð14Þ
Here, h�i;r and h�i;l correspond to hR and hL in Eq. (4). Thus, the second term on the RHS of (11) and (12)
cancels the difference of the hydrostatic pressures based on the piecewise polynomial reconstruction hi,r
and hi,l at the interior of the cell and the hydrostatic reconstruction h�i;r and h�i;l at the interfaces xiþ1

2

and xi�1
2
.
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The index j = 1,2 represents the order of the numerical source term SðjÞ
i . It is given by
Sð1Þ
i :¼

0

0

� �
for j = 1. For a first order reconstruction hi,r = hi = hi,l. Substituting this information in (11) and (12), and
using (13) and (14), one immediately obtains that at steady state Ui remains constant, so that the scheme is
well balanced. For j = 2:
Sð2Þ
i :¼

0

g hi;lþhi;r
2

ðzi;l � zi;rÞ

� �
; ð15Þ
Note that this corresponds to the source term discretization (6), and below we review the argument that shows
how this leads to a well-balanced scheme for the lake at rest. Together with a second-order Runge–Kutta time
discretization the fully discrete second-order well-balanced scheme of Audusse et al. is now complete. With
constant reconstruction and without the Runge–Kutta procedure you get the associated first-order scheme
[1]. Audusse et al. could show for their scheme that it preserves the nonnegativity of the water height hi(t),
it preserves the steady state of the lake at rest, is consistent with the shallow water system and their first-order
scheme does also satisfy an in-cell entropy inequality.

2.2. Second-order well-balancing

To motivate the subsequent development of a well-balanced scheme of very high accuracy, we need to re-
view the well-balanced property of Audusse et al.�s second-order semidiscrete scheme (10). Suppose that
H = h + z is constant at time t, and u ” 0. Since Hi,r = Hi+1,l,
h�i;r ¼ maxð0;Hi;r �maxðzi;r; ziþ1;lÞÞ ¼ maxð0;Hiþ1;l �maxðzi;r; ziþ1;lÞÞ ¼ h�iþ1;l
and since ui,r = ui+1,l = 0, we also have
U �
i;r ¼ U �

iþ1;l.
Because now the values U �
i;r and U �

iþ1;l are equal, and u = 0, the numerical fluxes F ðU �
i;r;U

�
iþ1;lÞ and

F ðU �
i�1;r;U

�
i;lÞ reduce to the hydrostatic pressure. Substituting this information in (12) and (11), we find
FrðUi;Uiþ1; zi;r; ziþ1;lÞ ¼
0
g
2
h2i;r

 !
and FlðUi�1;Ui; zi�1;l; zi;rÞ ¼

0
g
2
h2i;l

 !
.

This, together with the definitions (10)–(15) of the semidiscrete scheme implies
d

dt
hiðtÞ ¼ 0
and
d

dt
mi ¼ � 1

Dx
g
2
h2i;r �

g
2
h2i;l � g

hi;l þ hi;r
2

ðzi;l � zi;rÞ
� �

¼ � 1

Dx
g
h2i;r � h2i;l

2
� g

hi;l þ hi;r
2

ððHi;l � hi;lÞ � ðHi;r � hi;rÞÞ
" #

¼ � 1

Dx
�g

ðhi;l þ hi;rÞ
2

ðHi;l � Hi;rÞ
� �

.

Because of Hi,l = Hi,r = H,
d

dt
miðtÞ ¼ 0;
so
d

dt
U iðtÞ ¼ 0.
Therefore, the second-order semidiscrete scheme preserves the stationary state of the lake at rest.
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2.3. Higher order well-balancing

The project of the present paper is to show how to extend the first and second-order accurate well-balanced
schemes to any desired order of accuracy. Most ingredients which we use are well-established in the literature:
high order WENO spatial reconstructions [15], high order Runge–Kutta time discretizations [23,25], and
appropriate quadrature rules for the initial data. But there is one essential difficulty to be solved: we need
to find a quadrature rule for the source term which is both accurate and well-balanced. The remainder of this
section is devoted to the solution of this question.

As before, let Ui,r, Ui+1,l be the left and right values of a piecewise polynomial reconstruction at interface
xiþ1

2
. Of course, this time we work with polynomials of any desired order of accuracy. Define the hydrostatic

reconstruction hiþ1
2�

by (8) and (9) as before, and set
U �
i;r :¼

h�i;r
mi;r

� �
; U �

iþ1;l :¼
h�iþ1;l

miþ1;l

� �
. ð16Þ
Note that to achieve orders higher than two, it is convenient to reconstruct in the conservative variable m

(which is computed with full accuracy by the finite volume scheme) instead of the primitive variable u, which
is only derived from the conservative ones. We define the left and right interface fluxes Fl and Fr as before,
see (11) and (12). It remains to define a high order, well-balanced numerical quadrature of the source term S(j).
S :¼ �
Z x

iþ1
2

x
i�1

2

ghzx dx.
The main observation of this paper is that this can be done by numerical extrapolation. To do so, we subdivide
each cell into N subcells and apply the quadrature (6) to all subcells. This gives the quadrature SN,
SN :¼ g
XN
j¼1

hj�1 þ hj
2

ðzj�1 � zjÞ � S;
where zj ¼ zðxi�1
2
þ jDx=NÞ, etc., are local values of the reconstruction at the interfaces of the subcells. In the

situation of the lake at rest, where
zj�1 � zj ¼ hj � hj�1
the source term reduces to
SN ¼ � g
2

XN
j¼1

hj�1 þ hj
2

ðhj � hj�1Þ ¼ � g
2
ðh2N � h20Þ ¼ � g

2
ðh2i;r � h2i;lÞ.
By the same arguments as for the second-order case this is well-balanced, but it is still only second-order accu-
rate (see Table 2).

To get higher orders of accuracy we use numerical extrapolation (see e.g. the textbook of Deuflhard and
Bornemann [7]). Note that the quadrature (6) is symmetric and second-order accurate. Therefore, from The-
orem 4.39 of [7], there exists an asymptotic expansion of the form
SN ¼ S þ c1
Dx
N

� �2

þ c2
Dx
N

� �4

þ � � � ð17Þ
The SN can be combined for different values of N to compute S with any order of accuracy. For example, to
get a source term of order four, simply use
4S2 � S1

3
¼ S þ ~c2ðDxÞ4 þ � � �
Therefore, we define Sð4Þ
i by
Sð4Þ
i :¼

4 g
2
ðhl;i þ hc;iÞðzl;i � zc;iÞ þ g

2
ðhc;i þ hr;iÞðzc;i � zr;iÞ

� �
� g

2
ðhl;i þ hr;iÞðzl;i � zr;iÞ

� �
3

. ð18Þ
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Thus for the lake at rest:
Table
L1 erro

Numb

Conver

25
50
100
200
400
800
1600

Here t
order o
Sð4Þ
i ¼ � g

2
ðh2i;r � h2i;lÞ;
which leads to a well balanced scheme.

Remark 1. Compared with S1, the computation of S2 uses only one additional reconstruction point per cell,
namely the cell center. Thus we can compute S to fourth-order accuracy using three points per cell, which is
analogous to Simpsons rule (which may be obtained by extrapolating the trapezoidal rule). Note that we could
not use Simpsons rule directly, because this would not give a well-balanced scheme.
Remark 2. Any scheme that is well balanced with the source term (6) will also be well balanced with the
fourth-order source term (18). Besides our quadrature, one only has to add the correct interface fluxes which
couple the reconstruction in the interior of the cell, used for the quadrature, with the hydrostatic reconstruc-
tion used by the numerical fluxes.

We summarize our high order well-balanced finite volume schemes in the following theorem:

Theorem 3. Consider the fully discrete finite volume scheme given by a jth order Runge–Kutta time discretization

of the semidiscrete scheme (10), with kth order spatial reconstruction, hydrostatic reconstruction (8), (9) and (16),
interface fluxes defined by (11), (12), and source term S(l) given by an lth order extrapolation of (17). Then

(i) the scheme preserves the stationary state of the lake at rest

(ii) the scheme is consistent of order p: = min{j,k, l} with the shallow water equation (1).
Proof. We have already proved the well-balanced property. The proof of consistency follows closely that of
Theorem 3.1 of [1], q.e.d. h

Definition 4. In the following, we will denote our well balanced WENO schemes with the triplet (j,k, l), where
j,k and l denote, respectively, the accuracy in time of the Runge–Kutta integrator, the accuracy in space of the
WENO reconstruction and the accuracy of the quadrature rule (18).

In the numerical experiments in Section 3, we use a scheme of orders (4,5,4) where the classical 4th order
Runge–Kutta scheme is used for time integration, a 5th order WENO reconstruction is used in space (see
Appendix A) and the 4th order extrapolation (18) for the source term. According to Theorem 3, this scheme
is formally 4th order accurate. Surprisingly, in experiments with smooth solutions, it clearly gives 5th order
convergence, see Table 1 below. Note that we could also have used Shu�s TVD Runge–Kutta time discretiza-
tions [23] or the recent SSPRK schemes [12,26].
1
rs and numerical orders of accuracy for Example 3.1 for the new well-balanced finite volume scheme of order (4,5,4)

er of cells h hu

L1 error Order L1 error Order

gence table with fourth-order source term

1.13E � 02 8.22E � 02
1.84E � 03 2.61 1.71E � 02 2.27
2.83E � 04 2.70 2.48E � 03 2.78
2.07E � 05 3.77 1.77E � 04 3.81
8.18E � 07 4.66 7.02E � 06 4.66
2.67E � 08 4.94 2.29E � 07 4.94
8.40E � 10 4.99 7.21E � 09 4.99

he dominating term in the truncation error is the spatial discretization of the convective part, so the scheme converges with fifth
n the grids used.
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3. Numerical experiments

3.1. Order of accuracy

To verify the order of accuracy we follow Xing and Shu [29] and choose
Table
Same

Numb

Conver

25
50
100
200
400
800
1600

Now t
zðxÞ :¼ sin2ðpxÞ;
hðx; 0Þ :¼ 5þ ecosð2pxÞ;

huðx; 0Þ :¼ sinðcosð2pxÞÞ.
for bottom topography, initial water height and momentum. Here x 2 [0,1], the boundary conditions are peri-
odic, and the gravitational constant g is set to 9.812. We compute up to time t = 0.1 with CFL number 0.4.
Since the exact solution for this experiment is not known explicitly, we use the same well-balanced WENO
scheme of order (4,5,4) with N = 25,600 cells to compute a reference solution. We use a fifth-order WENO
reconstruction with e = 10�6 and optimal weights from (37), together with the weight splitting method [22]
to compute the central point values needed in the quadrature (18). Table 1 contains the L1 errors and numer-
ical order of accuracy for both components. We achieve full fifth-order convergence in both components. Note
that we have used the fifth-order WENO reconstruction in space, but only a fourth-order accurate extrapo-
lation of the source term and the classical fourth-order Runge–Kutta time discretization. Thus not all elements
of the algorithm contribute equally to the overall error. However, a standard second-order discretization of
the source term does reduce the order of accuracy to two, see Table 2. This shows the relevance of the key
new ingredient of our algorithm. We conjecture that on finer grids the quadrature rule for the source and
the time discretization error would eventually dominate also for the (4,5,4) scheme, lowering the overall accu-
racy from fifth to fourth order.
3.2. Perturbation of a lake at rest

The following problem was studied by LeVeque [20]. It shows the behavior of a small perturbation of a lake
at rest with variable bottom topography
zðxÞ ¼
0:25ð1þ cosð10pðx� 0:5ÞÞÞ if 1:2 6 x 6 1:4;

0 else;

�

where x 2 [0,2]. The total initial height is given by
Hðx; 0Þ ¼
1þ DH if 1:1 6 x 6 1:2;

1 else.

�

2
as Table 1, but second-order discretization of the source term S (order (4,5,2))

er of cells h hu

L1 error Order L1 error Order

gence table with second-order source term

1.12E � 02 8.29E � 02
1.87E � 03 2.58 1.73E � 02 2.27
2.86E � 04 2.71 2.50E � 03 2.78
2.18E � 05 3.70 1.82E � 04 3.77
1.37E � 06 3.99 9.99E � 06 4.19
2.18E � 07 2.65 1.46E � 06 2.77
5.05E � 08 2.11 3.31E � 07 2.14

he error of the source term discretization dominates, lowering the overall order of convergence to 2.
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LeVeque, who worked with a second-order scheme, used DH = 0.1. We will use DH = 0.001 as Xing and Shu
[29], Vukovic and Sopta [28] used for their higher order schemes: in this fashion the perturbation becomes
smaller and is therefore more challenging to capture. The initial velocity is set to
vðx; 0Þ ¼ 0
and the gravitational constant g = 9.81. We use a fifth-order WENO reconstruction with optimal weights
from (37) and e = 10�12 in order to satisfy (39). Indeed, e = 10�6 results in oscillations at the shocks. Periodic
boundary conditions are used. The CFL number is 0.4 and the final time is T = 0.2 (Fig. 4).

Figs. 5 and 6 show total height and momentum computed with 200 cells and 157 time steps, and a compar-
ison between first, second and (4,5,4)th order solutions are shown in Fig. 7. At this time, the wave traveling to
the right has just passed the hump, and part of it has been reflected. All the schemes are able to produce the
physically correct reflected waves (see the interval [1,1.5] around the hump). The new scheme shows remark-
ably high resolution. Schemes which do not preserve the discrete hydrostatic balance may introduce unphys-
ical waves and high frequency oscillations (see [28, Figs. 8 and 9]).

3.3. Dambreak over a rectangular wall

This test case simulates a dambreak over a rectangular wall. It produces a rapidly varying flow over a
discontinuous bottom topography. This example was used in [28,29]. The bottom topography is given by
zðxÞ ¼
8 if jx� 1500=2j 6 1500=8;

0 otherwise;

�

with x 2 [0,1500]. The total initial height is
Hðx; 0Þ ¼
20 if 0 6 x 6 750;

15 otherwise.

�

The initial velocity is set to zero v(x,0) = 0 and the gravitation constant is g = 9.81. At the left boundary we
use reflective boundary conditions and on the right side open boundary conditions. In Fig. 8, we show level
lines of the water level, or total height, of the solution up to time T = 60. In the beginning, one observes the
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Fig. 4. Example 3.2, bottom topography and initial water level.
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Fig. 5. Example 3.2, total height at T = 0.2 computed with 200 cells.
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Fig. 6. Example 3.2, momentum at T = 0.2 computed with 200 cells.
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standard rarefaction and shock waves which form the solution of the Riemann problem of the homogeneous
shallow water equations. Figs. 9 and 10 show the water level and velocity at T = 15. At time T � 17 the waves
cross the two edges of the wall. A part is transmitted, another part reflected, and a remaining part becomes a
standing wave. Such standing waves have recently been studied analytically by Klausen and Risebro [17],
Towers [27], Klingenberg and Risebro [18], and Seguin and Vovelle [21] who consider the inhomogeneous
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Fig. 8. Example 3.3, contour plot of water level in the x � t plane.
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one dimensional shallow water equations as a system of three conservation laws for (h,hu,z) with ot z = 0. This
system has the three wave speeds u�

ffiffiffiffiffi
gh

p
and 0. For later times, the wave system keeps interacting. At time

T = 60, we have six waves in the solution. The main shock and rarefaction waves just hit the boundary of the
computational domain. Between them we have, from left to right, a standing wave, a weak rarefaction
traveling leftwards, a second standing wave, and a weak compressive wave traveling rightwards. Figs. 11
and 12 show cross sections of total height and velocity. Note that the standing waves (which are contact
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Fig. 9. Example 3.3, water level at T = 15,600 cells.
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Fig. 10. Example 3.3, velocity at T = 15,600 cells.

488 S. Noelle et al. / Journal of Computational Physics 213 (2006) 474–499
discontinuities) are not easy to capture. This is discussed, e.g., in [28]. Here we have almost perfect resolution
of all features of this challenging solution.

4. Two dimensional extension

The shallow water equations in 2D are given by
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Fig. 11. Example 3.3, water level at T = 60,600 cells.
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Fig. 12. Example 3.3, velocity at T = 60,600 cells.
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ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

þ ðhuvÞy ¼ �ghzx;

ðhvÞt þ ðhuvÞx þ hv2 þ 1

2
gh2

� �
y

¼ �ghzy ;

ð19Þ
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where h is the water height, z is the bottom topography, u is the velocity in x-direction, v is the velocity in
y-direction and g is the gravitational constant. We will now discuss how to extend our scheme to two
dimensions.

4.1. Overview of the scheme

Rewrite the system (19) in the standard form:
Ut þ F xðUÞ þ GyðUÞ ¼ SðUÞ; ð20Þ

where clearly U = (h,hu,hv)T, F ¼ ðhu; hu2 þ 1

2
gh2; huvÞT, G ¼ ðhv; huv; hv2 þ 1

2
gh2ÞT and S = (0,�ghzx, �ghzy)

T.
We define the cell averages over grid cells I ij ¼ ðxi�1

2
; xiþ1

2
Þ � ðyj�1

2
; yjþ1

2
Þ by
Uij ¼
1

DxDy

Z
Iij

Uðx; yÞdxdy; ð21Þ
where Dx ¼ xiþ1
2
� xi�1

2
;Dy ¼ yjþ1

2
� yj�1

2
. Suppose for simplicity that the cells are square: let d = Dx = Dy. Inte-

grating each term in (19) over the cell Iij and invoking the divergence theorem, we get the following semidis-
crete scheme for the evolution of the cell averages Uij:
d2
d

dt
U ijðtÞ þ

Z
@Iij

ðF ;GÞ � nds ¼
Z
I ij

S dxdy;
Rewrite the system as:
d

dt
UijðtÞ þ

F iþ1
2;j
� F i�1

2;j

d
þ
Gi;jþ1

2
� Gi;j�1

2

d
¼ Sij; ð22Þ
where
F i�1
2;j
¼ 1

d

Z yjþ1
2d

yj�1
2d

F ðUðxi�1
2
; yÞÞdy; ð23Þ

Gi;j�1
2
¼ 1

d

Z xiþ1
2d

xi�1
2d

GðUðx; yj�1
2
ÞÞdx; ð24Þ

Sij ¼
1

d2

Z
I ij

Sðx; yÞdxdy. ð25Þ
In analogy with the 1D case, we reconstruct the variables h, hu, hv, and H, while the bottom topography is
given by z = H � h. In general, this yields a discontinuous approximation of z. Let Uij(x,y) denote the recon-
struction computed in the cell Iij with U denoting any of the reconstructed variables. Again, to preserve the
equilibrium states, a hydrostatic reconstruction is needed on the quadrature points on the boundary of the
cell, which will be denoted by h*:
h�iþ1;jðxþiþ1
2
; �Þ ¼ max 0;Hiþ1;j xiþ1

2
; �

	 

�max zij xiþ1

2
; �

	 

; ziþ1;j xiþ1

2
; �

	 
	 
	 

;

h�ij x�iþ1
2
; �

	 

¼ max 0;Hij xiþ1

2
; �

	 

�max zij xiþ1

2
; �

	 

; ziþ1;j xiþ1

2
; �

	 
	 
	 

;

h�i;jþ1 �; yþ
jþ1

2

	 

¼ max 0;Hi;jþ1 �; yjþ1

2

	 

�max zij �; yjþ1

2

	 

; zi;jþ1 �; xjþ1

2

	 
	 
	 

;

h�ij �; y�jþ1
2

	 

¼ max 0;Hij �; yjþ1

2

	 

�max zij �; yjþ1

2

	 

; zi;jþ1 �; yjþ1

2

	 
	 
	 

.

To approximate the quantities F i�1
2;j

and Gi;j�1
2
in (23) and (24), we use a quadrature
F i�1
2;j
’
X
k

xkF U xi�1
2
; yj þ nkd

	 
	 

;
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where xk and nk are the weights and nodes of the quadrature formula. For a fourth-order scheme we use the
classical two-point Gaussian formula
F i�1
2;j

’ 1

2
F U xi�1

2
; yj � ad

	 
	 

þ F U xi�1

2
; yj þ ad

	 
	 
	 

; ð26Þ
where a ¼ 1=ð2
ffiffiffi
3

p
Þ. A similar formula holds for Gi;j�1

2
.

We still need to construct a well balanced approximation to each of the flux evaluations required in (26). As
in 1D, the numerical flux is composed of two contributions. The first contribution (Fh for F and Gh for G) is
consistent with the flux of the homogeneous shallow water equations, the second contribution compensates
the perturbation introduced by the hydrostatic correction.

The modified state variables that will be applied in the flux computations are
U �
ij ¼

h�ij
ðhuÞij
ðhvÞij

0
B@

1
CA.
Along the edge ðxi�1
2
; yÞ for instance the numerical fluxes are
FlðUi�1;j;Ui;j; zi�1;j; zi;jÞi�1
2;j�a

:¼ F hðU �
i�1;j xi�1

2
; yj � ad

	 

;U �

ijðxi�1
2
; yj � adÞÞ þ g

2

0

h2ij xi�1
2
; yj � ad

	 

� ðh�Þ2ij xi�1

2
; yj � ad

	 

0

0
B@

1
CA ð27Þ
and
FrðUi;j;Uiþ1;j; zi;j; ziþ1;jÞiþ1
2;j�a

:¼ F h U �
i;j xiþ1

2
; yj � ad

	 

;U �

iþ1;j xiþ1
2
; yj � ad

	 
	 

þ g

2

0

h2ij xiþ1
2
; yj � ad

	 

� ðh�Þ2ij xiþ1

2
; yj � ad

	 

0

0
B@

1
CA;

ð28Þ
with similar formulas for Gl and Gr.
Thus the semidiscrete scheme can be written as,
d

dt
U ijðtÞ ¼ � 1

2d
Fr

iþ1
2;jþa þFr

iþ1
2;j�a �Fl

i�1
2;jþa �Fl

i�1
2;j�a þ Gr

iþa;jþ1
2
þ Gr

i�a;jþ1
2
� Gl

iþa;j�1
2
� Gl

i�a;j�1
2

	 

þ Sij.

ð29Þ

The construction of the source term Sij is carried out as follows. First we write the source term component-

wise: Sij ¼ ð0; Sx
ij; S

y
ijÞ

T. Note that the component of the source term in the x-momentum equation contains
only the derivative of z along the x direction. Thus, we employ the well-balanced quadrature (18) of the
previous section to integrate in the x-direction and apply the Gaussian rule in the y-direction. For the
fourth-order case,
Sx
ij ¼

d
2

sxi ðyj þ adÞ þ sxi ðyj � adÞ
� �

; ð30Þ
where
sxi ðyÞ ¼
4g
6

hij xi�1
2
; y

	 

þ hijðxi; yÞ

	 

zij xi�1

2
; y

	 

� zijðxi; yÞ

	 

þ hijðxi; yÞ þ hij xiþ1

2
; y

	 
	 

zijðxi; yÞ � zij xiþ1

2
; y

	 
	 
	 

� g

6
hij xi�1

2
; y

	 

þ hij xiþ1

2
; y

	 
	 

zij xi�1

2
; y

	 

� zij xiþ1

2
; y

	 
	 

.
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In the same fashion, we compute the source Sy
ij using (18) in the y-direction and the Gaussian rule in the

x-direction. Again, in the fourth-order case:
Fig. 1
recons
(xi±a,y
Sy
ij ¼

d
2

syjðxi þ adÞ þ syjðxi � adÞ
� �

; ð31Þ
where now,
syj ðxÞ ¼
4g
6

hij x; yj�1
2

	 

þ hijðx; yjÞ

	 

zij x; yj�1

2

	 

� zijðx; yjÞ

	 

þ hijðx; yjÞ þ hij x; yjþ1

2

	 
	 

zijðx; yjÞ � zij x; yjþ1

2

	 
	 
	 

� g

6
hij x; yj�1

2

	 

þ hij x; yjþ1

2

	 
	 

zij x; yj�1

2

	 

� zij x; yjþ1

2

	 
	 

.

Using the same arguments as in the proof of Theorem 3 one can show:

Corollary 5. The 2D scheme is fourth-order accurate and preserves the stationary state of the lake at rest.
4.2. 2D reconstruction

In order to evaluate the numerical flux functions F and G and the source term S, we need to reconstruct
point values of H, h, hu and hv at 12 integration points, 8 on the boundary ðxi�1

2
; yj�aÞ; ðxi�a; yj�1

2
Þ and 4 in the

interior (xi,yj±a) and (xi±a,yj) as shown on the right of Fig. 13. Note that the interior points are required only
to compute the source term, which is fourth-order accurate. As in the 1D case we apply a WENO procedure to
find these data.

In 2D this reconstruction is somewhat more involved. Our approach is to reconstruct each variable dimen-
sion by dimension. For each cell, the one dimensional WENO procedure has to be applied six times to produce
point values in all quadrature points.

To fix ideas, we illustrate the algorithm for the reconstruction of the variable h. In this section only, we
denote the cell averages as �hij, to distinguish the averages computed on a cell (a double integral) from the aver-
ages computed along only one segment (a single integral).

We start applying the WENO reconstruction procedure in the y direction, starting from the cell averages
�hij. We apply the reconstruction defined by the constants in Appendix A (38) and we find approximations in
the points (xi,yj+a) and (xi,yj�a) to the function:
�hijðxi; yj�aÞ ¼
1

d

Z xiþd
2

xi�d
2

hðx; yj�aÞdx.
3. (Left) The positions of the reconstructed cross section averages (xi±a, Æ) (dashed lines), (Æ ,yj±a) (black lines) for the first
truction step. (Right) The Gaussian integration points for the edges ðxi�1

2
; yj�aÞ; ðxi�a; yj�1

2
Þ and for the interior, (xi,yj±a) and

j). The point values in these locations are computed in the second step of the reconstruction.
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Once these data are available for all i, we apply again the WENO reconstruction along the x axis to get the
required point values, i.e., hijðxi�1

2
; yjþaÞ, hij(xi,yj+a) and hijðxiþ1

2
; yjþaÞ, starting from �hijðxi; yjþaÞ. With another

reconstruction, we find hijðxi�1
2
; yj�aÞ, hij(xi,yj�a) and hijðxiþ1

2
; yj�aÞ, starting from �hijðxi; yj�aÞ. This set of oper-

ations will be called y–x sweep, see Fig. 14.
To get the quadrature points along the dashed lines on the right in Fig. 13, we perform the same operations

in the reversed order. This will be called x-y sweep, see Fig. 15.
Now, all the quantities appearing in the semidiscrete scheme (22) have been defined. Finally, to get a fully

discrete scheme, we need to specify a method to march forward in time. As in the 1D scheme, we apply the
classic fourth-order Runge–Kutta method. For other cases, it might be advantageous to use the recent TVD or
SSP Runge–Kutta schemes [23,12,26].

4.3. Well-balanced test in two dimensions

The two dimensional experiments we present here follow closely the work of Xing and Shu [29]. We check
the behavior of the two dimensional scheme in a lake at rest situation on a rectangular domain [0,1] · [0,1],
with a non-flat, fully two-dimensional, bottom topography
Fig. 14
side. I
ðxi; yj�

Fig. 15
side. In
(right
zðx; yÞ ¼ 0:8e�50ððx�0:5Þ2þðy�0:5Þ2Þ. ð32Þ
. In the first step of the y–x-sweep we compute averages over cross sections (Æ ,yj±a) marked with black lines in the figure on the left
n the second step of the y–x-sweep we use the cross section averages to compute point values at quadrature points ðxi�1

2
; yj�aÞ;

aÞ (right figure).

. In the first step of the x–y-sweep we compute averages over cross sections (Æ ,xi±a) marked with dotted lines in the figure on the left
the second step of the x–y-sweep we use the cross section averages to compute point values at quadrature points ðxi�a; yj�1

2
Þðxi�a; yjÞ

figure).
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The initial water height is
Table
L1-erro

Numb

25
50
100
200
400
800
hðx; yÞ ¼ 1� zðx; yÞ; ð33Þ

so that the water surface level H is constant, with H ” 1.0. The momentum in x and y direction is set to zero:
huðx; y; t ¼ 0Þ ¼ 0 and hvðx; y; t ¼ 0Þ ¼ 0. ð34Þ

The lake is at rest initially, and should remain at rest indefinitely. In this situation, a scheme without well-
balancing would produce unphysical waves. For this test we use a uniform 100 · 100 grid and compute the
solution at time t = 0.1. We get the following L1-errors for the conservative components: ihi1 = 1.23E�16,
ihui1 = 2.20E�16 and ihvi1 = 2.22E�16. The errors are all of the magnitude of the rounding error 10�16 thus
the scheme is indeed perfectly well-balanced.

4.4. Testing the order of accuracy

To check the numerical order of accuracy we use the same experiment as Xing and Shu [29]. On the unit
square [0,1] · [0,1] we choose the bottom topography:
zðx; yÞ ¼ sinð2pxÞ þ cosð2pyÞ

the initial water surface level:
hðx; y; t ¼ 0Þ ¼ 10þ esinð2pxÞ cosð2pyÞ

and the initial momentum in the x and y directions, respectively:
huðx; y; t ¼ 0Þ ¼ sinðcosð2pxÞÞ sinð2pyÞ;
hvðx; y; t ¼ 0Þ ¼ cosð2pxÞ cosðsinð2pyÞÞ.
We compute up to time T = 0.05 with CFL-number 0.8. For the WENO reconstruction we use the optimal
weights of 37,38 and set e = 10�6. The reference solution is computed with the same scheme and 1600 ·
1600 cells, since the exact solution is unknown.

For this experiment we expect fourth-order of accuracy in all conservative components. The applied stan-
dard Runge–Kutta time integration, the integration of the numerical fluxes with Gaussian rule and the cell
centered source term are all formally fourth-order accurate, while the applied WENO reconstruction is
fifth-order accurate. Table 3 contains the L1-errors and orders of accuracy. We can clearly see that for this
two dimensional test case, fourth-order accuracy (in fact almost fifth-order) is indeed achieved in all
components.

4.5. A small perturbation of a two dimensional steady-state lake

This classical problem is given by LeVeque [20] and is also computed in [29]. For this problem we consider
the rectangular domain [0,2] · [0,1]. The bottom topography is displayed in Fig. 16 and it is given by:
zðx; yÞ ¼ 0:8e �5ðx�0:9Þ2�50ðy�0:5Þ2ð Þ.
3
rs and numerical order of accuracy for the convergence test 4.4

er of points CFL h hu hv

L1 error Order L1 error Order L1 error Order

0.5 8.77E � 03 3.42E � 02 6.71E � 02
0.5 1.10E � 03 3.00 2.73E � 03 3.65 9.40E � 03 2.84
0.5 9.84E � 05 3.48 1.56E � 04 4.13 7.85E � 04 3.58
0.5 4.91E � 06 4.32 6.58E � 06 4.57 3.93E � 05 4.32
0.5 1.82E � 07 4.76 2.41E � 07 4.77 1.46E � 06 4.75
0.5 6.06E � 09 4.91 7.94E � 09 4.92 4.90E � 08 4.90
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Fig. 16. Bottom topography of experiment 4.5 zðx; yÞ ¼ 0:8eð�5ðx�0:9Þ2�50ðy�0:5Þ2Þ.
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The initial water surface level is given by:
hðx; y; t ¼ 0Þ ¼
1:01� zðx; yÞ if 0:05 6 x 6 0:15;

1� zðx; yÞ otherwise;

�

so the initial surface level is almost flat, only in the region 0.05 < x < 0.15 it is perturbed upward by the dis-
placement 0.01. The initial momentum in the x and y directions is:
huðx; y; t ¼ 0Þ ¼ 0;

hvðx; y; t ¼ 0Þ ¼ 0.
We compute using two different uniform meshes with 200 · 100 cells and 600 · 300 cells.
Fig. 17 shows 30 uniformly spaced contour lines of the surface level H at times t = 0.12,0.24,0.36,0.48 and

final time T = 0.6. The results obtained with the coarse grid appear on the left side, while on the right we find
the numerical solution obtained with the fine grid.

In the simulation with the coarse grid we use e = 10�6 and for the fine grid e = 10�9. In both experiments we
choose the CFL-number equal to 0.5. As we can see, we get results comparable to the finite difference
approach in [29].

5. Conclusion

In this paper, we have constructed well-balanced finite volume schemes for the shallow water equations,
which are of any desired order of accuracy. The new schemes generalize a class of second-order schemes pro-
posed by Audusse et al. [1]. A (4,5,4)th order version of the new scheme gives the expected high resolution
both for smooth and non-smooth flows, and perfect balance for the lake at rest in one and two spatial direc-
tions. The key technique, a new quadrature formula for the source term, can be applied to a wide variety of
first and second-order well balanced schemes, to raise their order of accuracy. Work on stable schemes for
flows with dry areas is in progress.

We would like to thank an unknown referee for pointing us to the recent preprints [30,31], where a class of
more general balance laws is treated via different techniques. Our high order accurate quadrature technique



Fig. 17. Contour lines of the surface level h + z for the experiment of Section 4.5 at times t = 0.12, 0.24, 0.36, 0.48, 0.6. Left: 200 · 100
grid, right: 600 · 300 grid. There are 30 uniformly spaced contour lines in each plot. At time t = 0.12 the contour lines go from 0.999837 to
1.005974; at time t = 0.24 from 0.996091 to 1.014523; at time t = 0.36 from 0.988829 to 1.011245; at time t = 0.48 from 0.990559 to
1.004614; at time t = 0.6 from 0.995244 to 1.005207.
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using extrapolation carries over to that class as well, and it will be well-balanced exactly if the continuity con-
dition (4.8) of [31] holds. For the lake at rest, (4.8) is given by the hydrostatic reconstruction, but for each
system of balance laws, an analogous technique has to be established (seperately for each scheme). We will
leave this to future work.
Acknowledgements

We are grateful to two unknown referees for asking inspiring questions about the deeper mechanism of our
balancing approach. Moreover, we would like to thank Francois Bouchut for lively and stimulating discus-
sions. Francois gave us a version of his first and second-order well-balanced scheme. We would also like to
thank the Institute of Hydraulic Engineering and Water Resources Management of RWTH Aachen for pro-
viding the topographical data of lake Rursee. Part of this work was done while the first author was in residence
at CMA, ‘‘Center of Mathematics for Application’’ at Oslo University. The first and second authors would
like to thank CMA and its members for their generous hospitality.
Appendix A. WENO reconstruction

For completeness, we review the WENO reconstruction [15,24] for uniform grids in 1D. We aim to give
sufficient details of all parameters so that the reader could reconstruct our algorithm and recover the numer-
ical experiments. Necessarily, we present this as concisely as possible. For more details, we refer to the relevant
literature.

A main ingredient that we were not able to find elsewhere in the literature are the accuracy constants for the
points in the Gaussian quadrature at the edges of the two-dimensional cells.

Given cell averages
ui :¼
1

jCij

Z
Ci

uðxÞdx
on cell Ci of a smooth function u(x) and a fixed point x* 2 Cj, the WENO procedure provides a highly accu-
rate piecewise polynomial approximation R(x*) of u(x*).
Rðx�Þ ¼ uðx�Þ þ OðDx2r�1Þ ð35Þ
1. Define r small stencils, composed of r cells, around the cell containing xj
Sk :¼ ðxjþk�rþ1; xjþk�rþ2; . . . ; xjþkÞ; k ¼ 0; . . . ; r � 1
and one large stencil
T :¼
[r�1

k¼0

Sk
which contains all the cells from the r smaller stencils.
2. Given cell averages uj compute the interpolation polynomials pk(x) of degree (r � 1) associated with the

stencils Sk for k = 0, . . ., r � 1 and the higher order reconstruction polynomial Q(x), of degree (2r�1) asso-
ciated with the large stencil T. Here, interpolation is understood in the sense of cell averages.

3. Find the linear weights Cr
0; . . . ;C

r
r�1 such that:
Qðx�Þ ¼
Xr�1

k¼0

Cr
kpkðx�Þ. ð36Þ



For the fifth-order WENO reconstruction used in this paper, solving the linear system (36) leads to the fol-
lowing weights:
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ð37Þ
For the 2D extension we need also weights for the Gaussian points on the edges. Again we obtain them by
solving (36):
ð38Þ
4. Compute the smoothness indicators
ISk ¼
Xr�1

l¼1

Z xjþ1
2

xj�1
2

Dx2l�1ðpðlÞk Þ2 dx;
where l denotes the lth order derivative of pk.
5. Compute the nonlinear weights based on the smoothness indicators
xk :¼
ak

a0 þ � � � þ ar�1

;

where
ak :¼
Cr

k

ðeþ ISkÞ2
; k ¼ 0; 1; . . . ; r � 1.
Here e is a real number which is introduced to prevent the denominator from becoming zero. To preserve
accuracy, e should satisfy the constraints
0 < e; everywhere;

e � ISk; in regions where the solution is smooth.
ð39Þ
In the numerical experiments we use e = 10�6, except for the experiment in Section 3.2, where the ISk are
extremely small and we need to use e = 10�12 and for the fine grid computation of the 2D test of Section
4.5. This is due to the fact that the perturbation introduced in the lake at rest in these particular tests is
so small that the smoothness indicators become of the same order as 10�6 even when the solution is non
smooth.

6. The final WENO reconstruction is given by:
Rðx�Þ ¼
Xr�1

k¼0

xkpkðx�Þ.
It is well known that the negative weights appearing in (37) may lead to oscillations at discontinuities [22].
Note however that this problem occurs only in the reconstruction of the point values at the locations
(xi,yj±a) and (xi±a,yj) which are needed only in the computation of sxi ðyÞ and syjðxÞ, see (30) and (31). We
have tested the following two approaches: first, we simply replaced the weights by the fourth-order accurate
choice of C3

0 :¼ 0:25, C3
1 :¼ 0:5 and C3

2 :¼ 0:25. Since these data midpoint appear only in the quadrature Sð4Þ
i
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for the source term, which is only fourth-order accurate anyway, this does not decrease the overall order
(4,5,4) of the algorithm. The second cure is the splitting technique of Shi, Hu and Shu [22]. For the prob-
lems presented in this paper, this more expensive approach did not lead to superior results.
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